Write a Blog >>
Tue 10 Nov 2020 01:33 - 01:34 at Virtual room 1 - ML Testing 1

Deep learning (DL) techniques are rapidly developed and have been widely adopted in practice. However, similar to traditional software systems, DL systems also contain bugs, which could cause serious impacts especially in safety-critical domains. Recently, many research approaches have focused on testing DL models, while little attention has been paid for testing DL libraries, which is the basis of building DL models and directly affects the behavior of DL systems. In this work, we propose a novel approach, LEMON, to testing DL libraries. In particular, we (1) design a series of mutation rules for DL models, with the purpose of exploring different invoking sequences of library code and hard-to-trigger behaviors; and (2) propose a heuristic strategy to guide the model generation process towards the direction of amplifying the inconsistent degrees of the inconsistencies between different DL libraries caused by bugs, so as to mitigate the impact of potential noise introduced by uncertain factors in DL libraries. We conducted an empirical study to evaluate the effectiveness of LEMON with 20 release versions of 4 widely-used DL libraries, i.e., TensorFlow, Theano, CNTK, MXNet. The results demonstrate that LEMON detected 24 new bugs in the latest release versions of these libraries, where 7 bugs have been confirmed and one bug has been fixed by developers. Besides, the results confirm that the heuristic strategy for model generation indeed effectively guides LEMON in amplifying the inconsistent degrees for bugs.

Tue 10 Nov

Displayed time zone: (UTC) Coordinated Universal Time change

01:30 - 02:00
01:30
2m
Talk
Correlations between Deep Neural Network Model Coverage Criteria and Model Quality
Research Papers
Shenao Yan Rutgers University, USA, Guanhong Tao Purdue University, USA, Xuwei Liu Purdue University, USA, Juan Zhai Rutgers University, USA, Shiqing Ma Rutgers University, USA, Lei Xu Nanjing University, China, Xiangyu Zhang Purdue University
DOI
01:33
1m
Talk
Deep Learning Library Testing via Effective Model GenerationACM SIGSOFT Distinguished Paper Award
Research Papers
Zan Wang Tianjin University, China, Ming Yan Tianjin University, China, Junjie Chen Tianjin University, China, Shuang Liu Tianjin University, China, Dongdi Zhang Tianjin University, China
DOI
01:35
1m
Talk
Detecting Numerical Bugs in Neural Network ArchitecturesACM SIGSOFT Distinguished Paper Award
Research Papers
Yuhao Zhang Peking University, Luyao Ren Peking University, China, Liqian Chen National University of Defense Technology, China, Yingfei Xiong Peking University, Shing-Chi Cheung Hong Kong University of Science and Technology, China, Tao Xie Peking University
DOI
01:37
1m
Talk
Dynamic Slicing for Deep Neural Networks
Research Papers
Ziqi Zhang Peking University, China, Yuanchun Li Microsoft Research, China, Yao Guo Peking University, Xiangqun Chen Peking University, Yunxin Liu Microsoft Research, China
DOI
01:39
1m
Talk
Grammar Based Directed Testing of Machine Learning Systems
Journal First
Sakshi Udeshi Singapore University of Technology and Design, Sudipta Chattopadhyay Singapore University of Technology and Design
01:41
1m
Talk
Is Neuron Coverage a Meaningful Measure for Testing Deep Neural Networks?
Research Papers
Fabrice Harel-Canada University of California at Los Angeles, USA, Lingxiao Wang University of California at Los Angeles, USA, Muhammad Ali Gulzar University of California at Los Angeles, USA, Quanquan Gu University of California at Los Angeles, USA, Miryung Kim University of California at Los Angeles, USA
DOI
01:43
1m
Talk
Operational Calibration: Debugging Confidence Errors for DNNs in the Field
Research Papers
Zenan Li Nanjing University, China, Xiaoxing Ma Nanjing University, China, Chang Xu Nanjing University, China, Jingwei Xu Nanjing University, China, Chun Cao Nanjing University, China, Jian Lu Nanjing University, China
DOI
01:45
15m
Talk
Conversations on ML Testing 1
Research Papers
Fabrice Harel-Canada University of California at Los Angeles, USA, Ming Yan Tianjin University, China, Sakshi Udeshi Singapore University of Technology and Design, Shenao Yan Rutgers University, USA, Yuhao Zhang Peking University, Zenan Li Nanjing University, China, Ziqi Zhang Peking University, China, M: Hamid Bagheri University of Nebraska-Lincoln, USA