Write a Blog >>
Tue 10 Nov 2020 01:07 - 01:08 at Virtual room 1 - ML In Practice

Deep learning (DL) has been increasingly adopted by a variety of software-intensive systems. Developers mainly use GPUs to accelerate the training, testing, and deployment of DL models. However, the GPU memory consumed by a DL model is often unknown to them before a DL job is executed. Therefore, an improper choice of neural network architecture or hyperparameters can cause the DL job to run out of the limited GPU memory and fail. Our empirical study has found that many DL job failures are due to the exhaustion of GPU memory. This leads to a horrendous waste of computing resources and a significant reduction in development productivity. In this paper, we propose DNNMem, an accurate estimation tool for GPU memory consumption of DL models. DNNMem employs an analytic estimation approach to systematically calculate the memory consumption of both the computation graph and the DL framework runtime. We have evaluated DNNMem on 5 real-world representative models with different hyperparameters under 3 mainstream frameworks (TensorFlow, PyTorch, and MXNet). Our extensive experiments show that DNNMem is effective in estimating GPU memory consumption.

Tue 10 Nov

Displayed time zone: (UTC) Coordinated Universal Time change

01:00 - 01:30
01:00
2m
Talk
A Comprehensive Study on Challenges in Deploying Deep Learning Based Software
Research Papers
Zhenpeng Chen Peking University, China, Yanbin Cao Peking University, China, Yuanqiang Liu Peking University, China, Haoyu Wang Beijing University of Posts and Telecommunications, Tao Xie Peking University, Xuanzhe Liu Peking University, China
DOI Pre-print
01:03
1m
Talk
A First Look at the Integration of Machine Learning Models in Complex Autonomous Driving Systems: A Case Study on Apollo
Industry Papers
pengzi Concordia University, Canada, Jinqiu Yang Concordia University, Montreal, Canada, Tse-Hsun (Peter) Chen Concordia University, Lei Ma Kyushu University
DOI
01:05
1m
Talk
Enhancing the Interoperability between Deep Learning Frameworks by Model Conversion
Industry Papers
Yu David Liu SUNY Binghamton, USA, Cheng Chen ByteDance, China, Ru Zhang Microsoft Research, Tingting Qin Microsoft Research, China, Xiang Ji Microsoft Research, China, Haoxiang Lin Microsoft Research, Mao Yang Microsoft Research
DOI Pre-print
01:07
1m
Talk
Estimating GPU Memory Consumption of Deep Learning Models
Industry Papers
Yanjie Gao Microsoft Research, China, Yu David Liu SUNY Binghamton, USA, Hongyu Zhang University of Newcastle, Australia, lizhengxian Microsoft Research, China, Yonghao Zhu Microsoft Research, China, Haoxiang Lin Microsoft Research, Mao Yang Microsoft Research
DOI Pre-print
01:09
1m
Talk
IntelliCode Compose: Code Generation using Transformer
Industry Papers
Alexey Svyatkovskiy Microsoft, Shao Kun Deng Microsoft Corporation, Shengyu Fu Microsoft, USA, Neel Sundaresan Microsoft Corporation
DOI Pre-print
01:11
1m
Talk
Reducing DNN Labelling Cost using Surprise Adequacy: An Industrial Case Study for Autonomous Driving
Industry Papers
Jinhan Kim KAIST, Jeongil Ju Hyundai Motor Group, South Korea, Robert Feldt Chalmers University of Technology, Sweden, Shin Yoo Korea Advanced Institute of Science and Technology
DOI Pre-print
01:13
17m
Conversations on ML In Practice
Research Papers
Sidong Feng Australian National University, Australia, Tse-Hsun (Peter) Chen Concordia University, Yanbin Cao Peking University, China, Yanjie Gao Microsoft Research, China, Zhenpeng Chen Peking University, China, M: Joshua Garcia University of California, Irvine